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Introduction

Microwave imaging is a promising new modality for breast cancer diagnosis, partly
because it is non-invasive and the permittivity contrast between normal and malignant
breast tissues is high [Sha, graduate student on this project, Ref 1]. In addition, the

attenuation of EM propagation in normal breast tissues is low so that it can penetrate into -

the depth of the tissue [Sha, Ref. 1]. The hypothesis is that one can use signal detection
theory to improve the performance in detecting tumors in the breast by using this theory
to develop task-oriented information processing techniques that address directly the
decision-theoretic tasks of detection, localization, and classification of the tumor as
malignant or benign. This technique is being developed in the framework of the
microwave imaging modality, which has the advantages that the low levels of power
result in no known radiation danger, there are no contrast agents, and the examinations
are comfortable, i.e. no breast compressions, for the patient. Although there is
considerable scattering of a microwave signal in tissue, the presence, location, and nature
of tumors is “coded” in the combination of amplitude and phases in the signal energy
received at multiple sensors. Signal detection theory provides a framework for
incorporating knowledge of tissue characteristics, and its uncertainty, directly into the
design of task oriented information processors. In this research project a tissue-model-
based signal detection theory approach for the detection of mammary tumors in the
presence of normal tissue is being developed and tested. Using the ROC and other
performance measures, and simulation, preliminary bounds on the performance attainable
for various uncertainties in malignant tissue properties (permittivity), sizes, location, and
signal-to-noise ratios have been obtained.

Body

The details of the research done on this project during this reporting period are
summarized below in which the detailed descriptions are cited, References [1-3]. Copies
of the conferetice papers and posters cited [1-3] are included in the appendix of this
report. :

Background -~ Most of the past research in this field has focused on the study of the
dielectric properties, the design of the microwave imaging prototypes, and the
improvement of the EM forward and inverse algorithms. However, none of this research
has incorporated signal detection theory directly into the microwave imaging at the
measurement level. Markov Random Fields and detection theory have been applied in
mammography for diagnosis. However these only assumed a simple deterministic disk
object model or did not utilize the a priori knowledge of the projections. This research
presents Bayesian algorithms for Scattered Electromagnetic fields through an Uncertain
Permittjvity Image which incorporates the knowledge of the a prior permittivity image
modeled by the MRF, the measurement noise, as well as the physical model of the
forward scattered electric field. The Bayesian algorithms for the Uncertain Permittivity
Image and the Threshold Image Processors are also presented for comparisons. Our
approach exploits the propagation of the scattered microwave fields to develop better




diagnostic decision aids. Additional references to this background information are
contained in Ref. 2 |

On this concept research award, Sha, the graduate student on this project, with the help of
two other students, has compiled results from experiments in the literature that show that
the microwave dielectric properties of malignant tissue is different from that of normal
breast tissue [1]. Hence microwave imaging has the potential of providing a tool for
improving the diagnosis of breast cancer with no known radiation dangers [1].

Also, on this project, statistical models of tissue characteristics that model simple
uncertainties in the tissue permittivity within the framework of microwave imaging are
being developed {2, 3]. The Markov Random Field is used to model the breast
permittivity cross section as a propagating medium, and incorporate it into the forward
Electromagnetic (EM) propagation to predict the random field of the EM measurements
at areceived array of sensors. These models of tissue permittivity are then incorporated
into an optimal signal detection theory framework in which task-oriented goals such as
detection and localization of a tumor drive the information processing [2, 3]. Given these
EM field measurements, Bayesian approaches are then developed to compute the
likelihood ratio for tumor detection and the a posteriori probability display of tumor
localization. Using the ROC (receiver operating characteristics) as a quantitative

- performance measure and optimum signal detection theory, initial ROC’s have been

obtained using the optimum detection and localization information processing methods
derived in the above [2,3]. These results provide an upper bound on the detection of the
presence or absence of a tumor as a function of tumor permittivity contrast, size, noise,
and local spatial permittivity uncertainties that characterize the tissue in microwave
imaging [2, 3]. Using PCL (probability of correct localization) as a quantitative measure
of how well one can determine the location of a tumor, initial PCL curves have been
obtained that provide an upper bound on locating a tumor as a function of tumor contrast

[2,3]

Details of this research supported by this project are presented in the conference pépers "
and poster sessions, references [1-3], with coples of drafts of these references [1-3]

included in the appendix.

Key Research Accomplishments

e Sha et al have compiled results from experiments in the literature that show that
the microwave dielectric properties of malignant tissue is different from that of
normal breast tissue, and hence microwave imaging has the potential of providing
a tool for improving the diagnosis of breast cancer with no known radiation
dangers.

o Devéloped initial statistical models of tissue characteristics that model simple
uncertainties in the tissue permittivity within the framework of microwave
imaging.




e Incorporated the models of tissue permittivity developed above into an optimal
signal detection theory framework in which task-oriented goals such as detection
and localization of a tumor drive the information processing.

¢ Using the ROC (receiver operating characteristics) as a quantitative performance
measure and optimum signal detection theory, initial ROC’s have been obtained
using the optimum detection and localization information processing methods
_derived in the above. These results provide an upper bound on the detection of
the presence or absence of a tumor as a function of tumor permittivity contrast,
size, noise, and local spatial permittivity uncertainties that characterize the tissue

in microwave imaging.

e Using PCL (probability of correct localization) as a quantitative measure of how
well one can determine the location of a tumor, initial PCL curves have been
obtained that provide an upper bound on locating a tumor as a function of tumor
contrast

A

Reportable Outcomes

Liewei Sha, Erika Ward , and Brandon Story ,"A review of dielectric properties of
normal and malignant breast tissue," Proceedings of the IEEE SoutheastCon 2002, pp.

457 -462, Columbia, South Carolina, April 5 -7, 2002.

Liewei Sha, Loren W. Nolte, Zhong Qing Zhang and Qing H. Liu, "Performance analysis
for Bayesian microwave imaging in decision aided breast tumor diagnosis,” Proceedings
of the 2002 IEEE International Symposium on Biomedical Imaging Washington D.C.,
pp. 1039-1042, Washington, DC, July7-10, 2002.

Liewei Sha and Loren W. Nolte, “ Computer-aided algorithms for breast tumor diagnosis
using microwave diffraction measurements”, Era of Hope 2002 Department of Defense
Breast Cancer Research Meeting, Orlando, Florida, September 25-28, 2002. .

Conclusions

The initial detection and localization performance resuits (ROC’s and PCL’s) show that
the decision-aided Bayesian microwave imaging approach proposed in this paper has the
potential of providing additional and useful information for radiologists. This Bayesian
microwave imaging approach is driven by the ultimate decision tasks of whether or not a
tumor is present, and if so where is it. It benefits from incorporating the a priori
knowledge, although uncertain, of normal and malignant breast permittivity. This
approach also gains a decision performance advantage by processing the measurements




directly using signal detection theory, rather than post processing the reconstructed image
where some of the information needed for the decision has been lost.
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A Revnew of Dielectric Properties of Normal and Mallgnant Breast
Tissue
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ABSTRACT

This paper presents a review of the dielectric properties of
normal and matlignant breast tissues for radio through
microwave frequencies, as well as a brief summary of the
experiment methods and the mechanisms that explain the
difference in the dielectric properties of normal and
malignant breast tissue, This information provides a basis for
the development of diagnostic techniques for breast cancer
and also highlights the areas that are in meed of more
experiments.

1 ]NTRODUCTION
The contrast in the dielectric propenm between normal and

. malignant tissues is a basis for diagnostic applications using

microwave devices. The study of normal tissues has been
widely reviewed. This paper, in addition, collects together
dielectric property data on benign and malignant breast
tissues from a number of researchers, and presents them in
graphical form so that this information is convenient for
general reference. It should be emphasized that the data
shown has been interpolated, extrapolated or computed from
the graphs and tables, so it is not necessarily precise. This
paper also reviews the mechanisms behind the differences in
dielectric properties of normal and malignant breast tissues.
Most data are represented in terms of conductivity o and
relative permittivity &, since o and s of biological materials
are practically independent of frequency up to the microwave
range [1]. For the two low frequency cases with no o and €

- available, the data are represented in terms of a parallel

combination of a conductance G and a capacitance C. The
two pairs of terms are equivalent in that,

Y = G + joC = (Ad)oHoes)

M

Where, Y' is the complex admittance of the equivalent circuit
of an idealized parallel plate capacitor filled with the tissue of
o and €. A/d is the geometry factor. We assume (g’,0)
follow a bi-variate normal distribution. Therefore, the

‘modeling of the data can be represented by the specific cross

section of the distribution function, which satisfies,
{(x-mx)zlcx2+(y-m,)2/6, -2p(x-mo(y-my)/cxcy}/(lv 1 @

where, x is the relative permittivity, y is the conductivity, and
m,, m, and o, o, are the marginal mean and variance. p is
the correlation coefficient of &’ and o. If only the mean and
variance values are available but not the original data pairs,
we assume an independent distribution of (¢’,c) and p=0.

All data are from human breast tissue, except for one case
from rats. The category of breast tissues in the literature is
ambiguous. In this paper, we define the following major
categories of breast tissue. ‘

o fat : ,

s normal, includes glands tissue (lobules that produce
milk), and conmective tissue (fibrous tissue that
surrounds the lobules and ducts)

o  benign, includes fibroadenoma and mastitis

e  malignant, i.e. breast carcinomas

We first display the data in the low and hlgh frequency
regions, in the order of their publication date. Then we
discuss the consistency and inconsistency in the data as well
as the diagnostic value of the dielectric properties from the
data. Finally the mechanisms are reviewed.

2. REVIEW OF EXPERIMENT DATA

2.1, List of data at low frequency

1. Fricke etal. ([2], 1926, 20kHz, 24°C), measured the
parallel capacitance and resistance (R=1/G) of excised
samples from 55 patients, using a wheatstone bridge. Several
types of tissue were studied: fat, gland, mastitis,

L.t + banign
onoime! > mailgnent

.

r oo
-
(Wi
Mﬂl‘)
§
1
i

20l P L

ol ." (‘:: - > v L : / - .:" > 'V= -

1006 2000 3000 900
Capacitance)

fibroadenoma and carcinoma. Data is displayed in Fig.1.
Only one sample of fat is measured, no variance is avaﬂable
for this type. '
Figure 1: Capacitor versus Resistor
Left: original data; right: modeling of the data
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2. Morimoto et.al. ([3,4],1990, 10kHz, 37°C) obtained in vivo
measurements of breast cancer, fibroadenoma, normal breast
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tissue and fatty tissue using a three-electrode method. The

proposed equivalent circuit is composed of R, parallel with
the series of R; and C,. We transformed it to parallel R and
C, using R=RR/(RAR,), C=C,,. With no original data and
correlation coefficient available, Fig.2 displays the modeling
of the data, assuming p=0,

a
000 -3 fat

i
H

Figure 2: Capacitor versus Resistor

3. Jossinet et.al. ([5,6], 1996, 488Hz-IMHz, 21°C) measured
120 samples from 64 patients, using impedance probe sensors
connected with a microcomputer system. In Fig.3, data of six
types of tissue is displayed, gland (0), connective (*), fat (o),
mastopathy (square), fibroadenoma (+), carcinoma (V). We
calculated the relative permittivity and conductivity from the
original complex impedance data p~ (not the characteristic
impedance) using,

€ = Im (Up'oeo), 6 = Re(llp), p=/(cHoee)

10" 1 4

o 10 1©°
freavency (H2)

* Figure 3 Permittivity and conductivity versus frequency

2.2, List of data at high frequnecy

4. T.S. England etal ([7,8], 1949-50, 3-24GHz, 379
measured the attenuation o nepers/cm, and phase constant
radians/cm of the standing wave pattern of the excised human
- breast fat and carcinoma tissue samples in the wave-guide.
We computed the relative permittivity ¢ and conductivity o
using [23, Eqn4.28],

s={e’- B)o’poso, =20Plop,  (4)

The variance due to these measurements were computed
and presented with the light marker in Fig. 4. Our
extrapolations are shown with dashed lines.
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Figure 4 permittivity and conductivity versus frequency

5. W.T. Joines et.al. ([9,10,11], 1980, 30MHz-2GHz, 37°C),
obtained in vivo measurements of SMT-2A tumor and
mammary gland tissue samples from 22 rats. The
nondestructive method uses an open-ended coaxial probe to
produce a fringing field in the termination tissue and a
directional coupler and an oscilloscope to detect the fringing
pattern. The dielectric properties are then computed. The data
is shown in Fig. 5, in which skin effect is not corrected, and
the data can not be compared with in vitro data directly.

by 12 i EHE i
10" w 1°° 10 w 10°
frequency (Hz) frequency (Hz)

Figure 5: Permittivity and conductivity versus frequency [9]

6. S.S. Chaudbhary etal. ([12], 1984, 3MHz-3GHz, 24°),
measured excised normal and malignant breast tissues from
15 patients, using the time domain spectroscopy system of
HP. We use the total spread over the mean value (0.8%) to
compute the variance of the data, which is shown in Fig. 6.

Figure 6: Permittivity and conductivity versus frequency [12]

7. A). Surowiec atel. ([13], 1988, 0.02MHz-100MHz, 37°)
measured the input reflection coefficient of 28 samples from 7
patients, using a coaxial line sensor connected to an HP3577
petwork analyzer. Tissue types include ductal carcinoma,
lobular carcinoma, and surrounding tissues. The measnred
dielectric values are available only at 100kHz and 100MHz,
and we use square symbols to represent the mean and
mean-tstd values of those data in Fig. 7. The authors provided
the parameters €, ,¢, 1,6, and o, by fitting the data with the
Cole-Cole equations 1],

et E eI (IH(HE) “Howoss ®)

where, £=1/2nt, 1 is the relaxation time, f, is the relaxation
frequency, o is the distribution parameter that reflects the
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range of 1. s represents the low frequencies f << £, o
represents the high frequencies £ >> £, When o =0, Eqn.5 is
the same as Debye equation.
Figure 7 Permittivity and conductivity versus frequency

The curves in Fig. 7 are computed from the fitted Cole-Cole
model in [13]. The dark lines are the mean values, the light
lines are the meantstd values. Extrapolations are shown in
light color. Comparing the mean from the measurements and
the model, the conductivity values agree well, but the relative
permittivity values show some inconsistency.

8. AM. Campbell et.al. ([14], 1992, 3.2GHz, 24°C) measured
39 samples of normal breast fat, 18 samples of benign
tumors, 22 samples of glandular connective tissue and 20
samples of cancer from 37 patients, using a resonant cavity
perturbation method. Dielectric properties were measured
using the observation of the changes in resonant frequency. In
Fig.8, the left plot displays the original data. The right plot
illustrates the modeling of the data with Eqn.2.

Figure 8 conductivity versus permittivity
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Left: original data; Right: modeling of the data
9. W.T. Joines et al. ([15], 1994, 50MHz-900MHz, 24°C),

" measured admittance of 12 normal mammary samples and 12

malignant mammary samples from 12 patients, using a flat-
ended coaxial probe connected to a network analyzer HP
~ 8754A. € and & are then computed from the admittance with
- the knowledge of the geometry factor. In Fig. 9, the mean
values are presented with the solid lines, the standard error
on the mean is presented with the dashed lines.
Extrapolations are represented with light lines.

Figure 9 Permittivity and conductivity versus frequencies [15]
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10. P.M. Meaney et.al. ([16], 2000 900MHz,37°) obtained
the in vivo breast microwave imaging of 5 patients, all non-
malignant, at 900MHz.

Figure 10 conductivity versus permittivity

We display the modeling of the data of individuals in Fig. 10
to represent the heterogeneity within and across patients. The
correlation coefficient is not available and assumed to be 0.

2.3. Data consistency and inconsistency

Low frequencies. At low frequency ranges, the dielectric
values of the four types of tissue are all available for the first
three cases, as shown in Figures 1, 2 and 3. We cannot
compare them directly, because of the unknown geometry
factors in cases 1 and 2. Yet we can still make comparisons
according to the relative distribution of the data for the same
tissue types. The consistencies noted are listed below,

o The conductivity of the malignant tissue falls between the
fat (plus connective tissue) and the normal gland tissue
(plus the benign fibroadenoma and mastitis tissues).

* The benign and normal tissues can be grouped together
relative to the malignant tissues on the € -c plane.

o The relative position of the fat tissue on the £-c plane
compared to the other types is the same.

This information of data consistency provides a basis for
identifying breast cancer, benign tumor and normal breast
tissue using the tissue conductivity at 1kHz-1MHz.

The inconsistency in the first three cases is that the

malignant tissue has lower capacitance (or permittivity) than
that of the normal and benign tissues in case 2 and the lower
frequency region of case 3, but it has the largest capacitance
values in cases 1 and the higher frequency region of case3.
One of the possible reasons for the inconsistency is the
frequency difference. It is 10kHz in case 2, 20kHz in case 1
and 488Hz-1MHz in case 3. Therefore, the inconsistericy can
be related with a turning frequency point in tens of kHz,
above which the capacitance value of cancerous tissues
became larger than that of normal and benign tissues. Other
reasons for the inconsistency are the intrinsic heterogeneity
and the temperature difference of tissue samples.
. This information of inconsistency suggests that in the
range 1kHz to 1MHz, the capacitance of breast tissues is not a
good quantity to diagnose breast cancer. More experiments
and analyses on the capacitance properties of normal and
malignant breast tissues are needed in this frequency range.

High frequencies. In the high frequency range, we can
compare the dielectric data directly.
Figure 11 Permittivity versus frequency
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Figure 12 Conductivity versus frequency

Fig. 11 and 12 illustrate the dielectric data together in the
range S500KHz to 20GHz. One more case of breast fat [21] is
included. Four types of breast tissue: fat (s), normal (o),
benigh (+), malignant (V) are displayed.

For a clearer view, Fig. 13 and 14 illustrate the modelmg of
the data for multiple cases on the ¢-c plane at 900MHz and

- 3.2GHz. Again, four types of breast tissue: fat (o), normal (o),

benign (+), malignant (V) are displayed.
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Figure 13 Conductivity versus Permittivity, at 900MHz
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Figure 14 Conductivity versus Permittivity, at 3.2GHz

From Fig. 11-14, we observe the data inconsistency,

e The mean dielectric values of pormal and malignant

breast tissues have obvious variability.

¢ The mean conductivity values of normal breast tissues in
Joines’ rat data, Campbell’s data, and Meaney’s data are
more than fwice that of other normal breast tissue cases
at the corresponding frequencies. The mean permittivity

values of normal breast tissue in Joines® rat data and

Campbell’s data are more than twice that in England’s

data and Chaudhary’s data at 3.2GHz frequency.

The possible two reasons for the inconsistency are listed
below, which may help explain the results and improve the
future experiment designs.

o Experiment method

1. Limitations in experiments. Chaudhary’s samples
were collected in physiological saline, which will
affect the accuracy of the data. Campbell’s
malignant samples are frozen and defrosted before
the measurement, Wthh may affect the accuracy of
the data of this type.

2. In vivo vs in vitro. Joines® rat data is from in vivo

-measurenients  with uncorrected skin effects.
Meaney’s data comes from reconstruction of in vivo
microwave imaging. Others are from excised
samples. In vivo methods seem to have higher
dielectric values.

3. Sample temperature differences. Lower sample
temperature will make the dielectric value a little bit
lower, when the frequency is below 2GHz.

. Intrms1c heterogeneity : ,

1. Normal breast tissnes are composed of breast fat,
connective tissue and gland tissue, etc. In the
literature, the composition of normal breast tissues
from case to case may differ. '

2. Different stages of tumor development will change
the tumor’s dielectric property and introduce
variability [2,13]. Some samples of malignant tissues
were actually composed of small parts of malignant
cells infiltrating within a large part of normal cells,
which may decrease the mean value of the malignant
tissue samples.

3. Across patients. The breast tissue samples from
patients with different water content or fat content
and in different stage of menstruation, pregnancy or
lactation will have obvious differences in dielectric
values. Campbell’s data came from a relatively
larger patient group, which may introduce wider
variability. B

This inconsistency information indicates the importance of
using proper sample storage method before experiments and
suggests a standardization of the experiment conditions like
the sample and environment temperatures, as well as the
record of patients’ information for later analysis.

Although there are so many conditions out of control, we
still observe the data consistency from Fig. 11-14
« The mean conductivity of the normal tissue is less than
15ms/cm up to 3.2GHz.
"o Malignant tissues have higher mean permittivity and
conductivity values than those of normal breast tissues
o Fat tissues have the lowest mean perxmttmty and ‘
oonducuvxty values :

#2002SECon-SEC108: page 4




This data consistency information provides the basis for
breast cancer diagnosis using the dlelectnc properties in the
microwave frequency range.

2.4. Discussion of the diagnostic values
It is misleading to use only the contrast of the mean values
to judge the diagnostic value of the dielectric propertics.
- Since the intrinsic heterogeneity in malignant tissue is large,
this will decrease the mean contrast. The mean values from
samples across patients will decrease the contrast as
compared to an individual patient. Therefore, the diagnostic
value of the dielectric properties seems to be underestimated,
as in case 8. A better concept might be to use the contrast of
" the maximum value of the malignant tissue with the mean of
the neighborhood normal tissue samples [2,13]. Better
criterion can be defined using the probability of detection and
false alarm, in which the random model of the point dielectric
values and the spatially distributed dielectric values are
incorporated.
In summary, we observed the diagnostic value of the
dielectric properties from the data, as
o The low conductivity values of the normal breast tissue
enable penetration of microwave frequencies up to the
low GHz range, which coincides with the simulation
results in [22].
o At 100MHz-1GHz, dielectric properties can significantly
help classify normal and malignant tissues.
o At frequency ranges of 1GHz-3GHz, dielectric properties
can help classify normal and malignant tissues.
e At 10kHz-IMHz, dielectric property can help classify
normal, benign and malignant tissues, yet mainly
depends on the conductivity. '

2.5. Areas in need of more experiments :
o The dielectric properties of benign tissues compared with
_ that of the malignant tissues and normal tissues in the
frequency range of 100MHz-3GHz.
o The spatial distribution of the dielectric properties of
normal, benign and malignant breast tissues.
o The dielectric properties of human breast cancer in
" different development stages.

3. MECHANISM: NORMAL VS MALIGNANT TISSUE

We first review the mechanism of the dielectric properties
of biological tissues in general.

The frequency dependence of diclectric properties of
biological tissues is related to the polarization of molecules
and structural interfaces in response to the applied electric
" field [9). Data from Schwan and Foster on high water content
muscle tissue suggests the presence of three dispersion
regions: alpha, beta, and gamma, with the relaxation
frequencies to be kHz, hundreds of kHz, and GHz [17]. The
delta dispersion, located in half way between beta and gamma
regions, has also been identified [1,18,19].

For engineering applications, the alpha dispersion has little
significance [1]. Beta dispersion occurs at radio frequencies,
and arises principally from the charging of cellular

membranes, with smaller contributions from the protein
constituents and ionic diffusion along surfaces in the tissue
[1,18,19].

Tissues typically exhibit a small dispersion between 0.1 and
3GHz, which have been termed the delta dispersion [1,19] or
“UHF relaxation” [18]. A combination of mechanisms are
suggested for this region: bipolar relaxation of the water of
hydration “bound” to proteins, a Maxwell-Wager effect due to
jons in the cytopalsm collection against ' relative
nonconductive protein surface and rotation of polar side-
chains on the protein surface [1,9,18]. The relaxation
frequency is dominant mostly by bound water (fr of 100-1000

MHz [1], Protein molecules (fr of 40-300 MHz) and free
water (fr=25GHz).

The gamma dispersion occurs with a center frcquency near
25GHz at body temperature, due to the dipolar relaxation of
the free and bound water and ionic conductivity. Campbell
and Land [14] attribute higher than expected conductivity at
3.2 GHz to the “tail end” of p-dispersion effects.

In recent studies, a variety of factors have been explored,
which lead to pronounced difference in diclectric properties
in normal compared with malignant tissues, as listed below:

Necrosis. Inflammation and necrosis are commonly found in
malignant breast tissues. Presence of necrosis leads to
breakdown of cell membranes and thus a larger fraction of
the tissue that can carry current at low frequencies [20],
which decreases the capacitance of the tamor [2].

Charging of the cell membrane. In breast carcinoma, there

is a progressive replacement of fat lobules with fibroblastic
proliferation and epithelial cells. Which also accompanied by
a variety of alterations at the transformed cell surface
[12(22)]. Cancer cells have reduced membrane potentials and
tend to have altered ability to absorb positive ions [19(77)],
they have a higher negative surface charge on their
membranes [9(4,21),19(78)]. According to Joines et.al.,

conductivity of the malignant tissues is increased with thls

mobile charge being displaced and rotated by the microwave

field [9].

Relaxation times. The relaxation times in malignant tissues
are larger than those in normal tissue, indicating that a
significant increase in the motional freedom of water has

occurred [19(75)]. Surowiec et.al.[13] reported that cancerous

breast tissues have average dielectric relaxation times
between 0.6us and 1.4 us and the surrounding normal tissues
had shorter relaxation times pf 0.3us.

Sodium concentration and water content. The sodium
concentration in tumor cells is higher than in normal cells
[19(76)]. The excessive sodium concentrations not only affect
the cell membrane potentials [10, (9-11)], but causes
malignant tissue to retain more fluid. According to Joines
etal, the excess sodium fluid alone would yield greater
conductivity and permittivity values in malignant tissue than
in normal tissue. In addition, the fluid is retained in the form
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of bound water, which has larger values of ¢ and ¢ than free
water [10].

Malignant tissues have s1gmﬁcantly higher water contents
than normal tissues [18,19 (76)). The data from Campbell
and Land [14] illustrates the diclectric properties related with
the water content at 3.2GHz of the breast tissues, as shown in

Fig. 15 and 16. The relationship between relative permittivity .

and water content is strikingly similar to the relationship
between conductivity and water content. This leads to the
conclusion that the same mechanism is responsible for the
change in both dielectric properties.

Malignant breast tissue has a higher ratio of water content
compared with that of the normal tissue, which coincides its
higher values of permittivity and conductivity than normal
breast tissue at the same microwave frequency. However, in

~ this data taken at 3.2 GHz, there is not a marked difference in

the water content of bemign breast tissue and malignant
tumor.
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4. CONCLUSION

This paper presents an initial review and consolidation of
the dielectric properties of normal, benign and malignant
tissues in the range of 10kHz-20GHz. A brief explanation of
the experiment methods is presented as well as the
mechanisms that explain the difference in the dielectric
properties of normal and malignant tissues. The consistency
and inconsistency of the data are discussed as well as
suggestions for the possible inconsistency. It is observed that
the diclectric propetties of breast tissue, even though

containing uncertainty, have good diagnostic value in the
range of 100MHz-3GHz.
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ABSTRACT
In this paper the Markov Random Field is used to mode] the
breast permittivity cross section as a propagating medium,
and incorporate it into the forward Electromagnetic (EM)
* propagation to predict the random field of the EM measure-
ments at a received array of sensors. Given these EM field
measurements, Bayesian approaches are then developed to
compute the likelihood ratio for tumor detection and the a
posteriori probability display of tumor localization. Quan-
titative performance evaluations using simulations demon-
strate the advantage o( using the Bayesian approach to di-
rectly process the measurement data as compared to using
the Bayesian or threshold approaches to detect and localize
the tumor based on the reconstructed permittivity image.

1. INTRODUCTION

Microwave imaging is a promising new modality for breast
cancer diagnosis, partly because it is non-invasive and the
permittivity contrast between normal and malignant breast
tissues is high [1]. In addition, the attenuation of EM propa-
gation in normal breast tissues is fow so that it can penetrate
into the depth of the tissue [1]. Most of the research in this
field has focused on the study of the dielectric properties
{1,(1-22)], the design of the microwave imaging prototypes
{2], and the improvement of the EM forward and inverse
algorithms {3][4]{5]. However, none of this research has
incorporated signal detection theory directly into the mi-
crowave imaging at the measurement level. Markov Ran-
dom Fields (MRF Hammersley and Clifford {6]) and detec-
tion theory have been applied in mammagraphy for diagno-
sis, such as [7){8][9]). However, [7] and [8] only assumed
a simple deterministic disk object model. [9] did not uti-
lize the a priori knowledge of the projections. This papet
presents Bayesian algorithms for Scattered Electromagnetic
fields through an Uncertain Permittivity Image (BP_SEUPI),
which incorporates the knowledge of the a prior permittiv-
ity image modeled by the MRF, the measurement noise, as
well as the physical model of the forward scattered elec-
tric field. The Bayesian algorithms for the Uncertain Per-
mittivity Image (BP-UPJ) and the Threshold Image Proces-

sors (71P) are also presented for comparisons. It should be
noted that the forward EM scattering field is computed us-
ing the Extended Born Approximation (EBA) accelerated
CGFFT method, which has been proposed by Zhang and
Liu in {4]{10]. The reconstructed permittivity image is ob-
teined using the EBA as the initial solution followed by the
Contrast Source Inversion (CSI [11]) method, which has
been proposed by Zhang and Liu [4].

2. DIAGNOSIS MODEL

The binary hypotheses considemd are:

Hp: No tumor present

Hj: Tumor(size LxL) present, located at an unknown posi-
tion S on the 2D lattice € of the permittivity cross section.

The decision as to whether the tumor is present or not,
ie. whether Hy or H; is true, is the detection problem.
‘Where the tumor is located if H is true, is considered to be
a localization problem. ‘

The data for the BP_SEUPI are the microwave measure-
ments r, shown in the middle of the Fig. 1. r is composed of
concatenating pieces. Each piece is a complex Kx 1 vector
representing the narrow-band frequency component of the
scattered electric field sampled by K sensors, from a sin-
gle transmitter, which is one of the K sensors. It assumes
r = 8 +n, s is the signal, and n is the additive noise at
the sensors, modeled by a multivariate complex Gaussian
distribution, with zero mean and 02 [ia covariance matrix.
The signal to noise ratio (SNR) is given by IOIoglo(u—)
(dB). The propagating medium of the EM field is the un- -
certain permittivity image modeled by the MRF, a sample
of which is shown in the left of Fig. 1.

The data for BP_UPI and TIP is the reconstructed per-
mittivity image €, = T~1(r), as shown in the right of Fig.
1 where T~! represents the reconstruction procedure.

The uncertainties in this problem are the tumor position,
the noise at the sensors, as well as the spatial distribution of
the breast permittivity which reflects statistically the tissue
variance in individuals and the background structure vari-
ance across patients,
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Fig. 1. Numbers 1-24 represent the sensors. Left: original
tissue permittivity image; Middle: real and imaginary part
of 2 sample measurement data; Right: reconstructed tissue
permittivity image. x

2.1. Model of Breast Permittivity Image

We utilize the MRF to mode! the breast permittivity im-
age, because it implements the idea that spatially nearby tis-
sue permittivities are similar. The Gaussian MRF (GMRF,
Chellappa [6]) is selected because it provides a simple form
to be incorporated in the Baysian approaches. It is important
to realize that this model is statistical, and is not intended to
be a model of the detailed deterministic structure of permit-

 tivity of a particular individual. The GMRF is defined as

p(zijlzi € O\ {(1,1)}) =

exp (= 5o (== (s = Tusens; By o (n=sa)))*)

pL )

O

?

where 1;; and o7; are the mean and variance at (i,j)- Bij),(xy
are the interaction coefficients. The 8's provide two kinds
of information: one is the neighborhood of (ij), i.e. Ay
which implies that the permittivity at (i,j) only depends on
the permittivities in it's neighborhood. Another is the influ-
ence of the neighbors on the point (i,j), as represented by
the sign and value of the interaction coefficients.

We assume the permittivity image size is 9.2cmx9.2cm,
529 pixels. The tumor size is 25 pixels. The mean values of
tumnor and background are u; = 40 and &, = 30, whose val-
ues are similiar to normal and malignant breast permittivity
values from experiments [1]. The interaction coefficients
of tumor and background are 8; with 3 pixel correlation
length and 8, with 20 correlation length. An algorithm pro-
posed by Rue [12] is used to fit the interaction coefficients
to the Gaussian field. Applying Hammersley-Clifford theo-
rem {6), given Eqn.1, we derive the mean vector u and ug,
covariance matrix Q and Qg of the joint pdf of the permit-
tivity image under the Hp and H; conditions respectively.

* Subscript S denotes the tumor position.

2.2. Detection and Localization Approaches

According to signal detection theory, the optimal detector is
the likelihood ratio of the data vector followed by a thresh-
old whose value is determined by the optimum criterion

(T.G.Birdsall). The optimal localization processor calcu-
lates the a posteriori probability of the tumor position given
the data vector. We derive the likelihood ratios(}) for the
Bayesian detector and threshold detector, as well as the a
posteriori probability image for the Bayesian localization
processors. We assume that the unknown tumor position
has a uniform distribution a priori on the 2D lattice ).

2.2.1. Bayesian Processor for Scattered EM field propa-
gated through theUncertain Permittivity Image (BP_SEUPI)
detector  A(r)

- L
Tsen fe,e"l’( {r T(er);a?fr T{er)) Yoler | H1,8)de,

J,, exp (— =2 lr=T el e, | HOMde,

@

localization processor
p(Slr) o f, exp(— C=Te{r=Teel (e | 1, ).
3

Both the BP_SEUPI detector and the localization proces-
sor require a high dimensional integration, which is a tough
problem. This paper tries to overcome this difficulty by us-
ing a multivariate complex Gaussian distribution to approx-
imate the random field of the measurements data, which has
been found to have good performance in the simulations.

2.2.2. Bayesian Processor for Uncertain Permittivity Im-
age (BP_UPI)

detector Aer) x

—)T i mte 1 3T, _
ngleS Iexp((ir 1)” Qer—p) (;r p25) Qs {er ”siz)

localization processor

- T - .
§Sler) | Qs | exp(~ Er =2V Bsler =)y

2.2.3. Threshold Image Processor(TIP)

detector A=maezr e » 0
. max

localization processor S = Sen &(S) (8)

3. SIMULATION RESULTS

3.1. An example
Fig. 2a) shows an example of a stochastic background per-

mittivity image of the tissue, along with a simulated tumor, .
modeled by the GMRE. Fig. 2b)-d) are the reconstructed

permittivity images from the perfect measurement data as

well as from 60dB and 50dB noisy measurement data. The
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signal detection approach using the permittivity data com-
putes the a posteriori probability of the tumor location given
either the original permittivity image, or the reconstructed
image as data. Fig. 2e gives an upper bound on tumor lo-
calization by plotting the a posteriori probability of tumor
location using the tissue data of Fig. 2a. Fig. 2f-h shows the
a posteriori plots of tumor location based on post process-
ing the reconstructed tissue data shown in Fig. 2b-d. Fig.
2j-1 shows the a posteriori plot of tumor location based on
the same measurements used to get the reconstructions in
Fig. 2b-d.

Plots 2g-h show that at the 60dB and 50dB SNR con-
dition, the BP_UPI using the reconstructed data misses the
correct location of the tumor, and Fig. 2k-1 shows that the
BP_SEUPI using the measurement data gets the correct tu-

_ mor localization with high probability. This is a specific ex-

ample where the BP_SEUPI works better. In the following
sections, it is demonstrated statistically that the processors
using the measurement data have better performance.

-’ll D]

Fig. 2. a) Original tissuc permittivity image; b)-d) Recon-
structed permittivity from the measurement data b) with-
out additive noise c)d) with additive noise, c) 60dB SNR d)
50dB SNR; €)-h) the @ posteriori probability of the tumor
position given the permittivity image data - p(S | ¢,), data
€, comes from a)-d); j)-1) the a posteriori probability of the
tumor position given the measurement data - p{5 | r)

3.2. Detection performance

Fig. 3a) illustrates the detection performance comparisons
assuming no additive noise. In 3a) the ROC of the thresh-

Fig. 3. The detection performance of the BP_UPI using
original tissue data, BP_UPI using reconstructed permittiv-
ity image data, TIP using reconstructed permittivity image -
data and BP_SEUPI using measurement data. a)no additive
noise presents at sensors; b)c) [Inf, 60,50] dB noise at sen-
sors b) BP_UPI & TIP c) BP_UPI & BP_SEUPI

old detector provides a performance lower bound. The TIP
mimics the way a routine visual examination of the image
might be done. Although it is not sophisticated, it's ROC re-
flects the problem of high positive predictive Value(PPV) of

- conventional mammography. Using the reconstructed per-

mittivity image data, the BP_UPI detector is much better
than the TIP detector, especially when the probability of
false alarm is low, because the BP_UPI utilizes the a pri-
ori knowledge of the tissue background across patients and
the a prior knowledge of the different characteristics of the
normal and malignant tissues to improve the detection per-
formance. ‘

Fig. 3a) also shows that the BP_SEUPI detector using
the measurement data is better than BP_UPI detector using
the reconstructed permittivity data, yet worse than BP UPI
detector using the original permittivity data. In reality, we
do not have access to the original tissue permittivity im-
age directly but to the EM measurements. However, this
provides an upper bound for performance evaluations. The
BP_UPI detector using the original permittivity data is better
than the BP_SEUPI because the forward EM field maps the
variables from the original permittivity domain to the mea-
surement domain, which shrinks the random variable space
and decreases the detectablity.

Fig. 3b)c) compares the performance of the detectors
when noise is present. It indicates that sensor noise de-
grades all the detection performances. It also demonstrates
that for three SNR conditions, both Bayesian detectors are
better than the threshold detector and the BP_SEUPI is bet-
ter than the BP_UPI using the reconstructed permittivity data.
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3.3. Localization performance

Fig. 4 shows the localization performance of the BP_SEUPI
using the measurement data, and the BP_UPI and TIP using
the reconstructed tissue permittivity data. The localization

b) window dismuter =1

) window diameter x0

Fig. 4. Localization performances: solid line, BP_SEUPI
using the measurement data; dotted line, BP_UPI using the
reconstructed tissue permittivity data; dashed line, TIP us-
ing the reconstructed tissue permittivity data

performance is shown using the probability of correct lo-
calization (PCL) curves. PCL is obtained by computing the
ratio of the number of comect localizations over the total
trials. The localization is correct if the located tumor po-
sition is within the test window. If it is required that the
located position is exactly the same as the real position to
be true, the window diameter is zero. For the other values

of the window diameter:1,2,2.8284, the window sizes are

9,13,25 pixels. Fig. 4 shows that at 50dB or 60dB SNR
condition, both the BP_UPI and the BP_SEUPI have better
performance than 0.9 PCL. They are much better than the
threshold approach for all the tested SNR conditions. The
BP_SEUPI localization using the measurement data is the
best of the three. -

4. CONCLUSION

The results of the detection and localization performances
show that the decision-aided Bayesian microwave imaging
approach proposed in this paper, BP_SEUPI, has the poten-
tial of providing additional and useful information for radi-
ologists. It is an algorithm whose goal is at the heart of the
ultimate decisions; i.e. is a tumor present, and if so where.
It benefits from incorporating the a priori knowledge, al-
though uncertain, of normal and malignant breast permit-
tivity. It also gains a decision performance advantage by
processing the measurements directly rather than as a post
processor to a reconstructed image.
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